Heat shock of HeLa cells inactivates a nuclear protein phosphatase specific for dephosphorylation of the C-terminal domain of RNA polymerase II.

نویسندگان

  • M F Dubois
  • N F Marshall
  • V T Nguyen
  • G K Dahmus
  • F Bonnet
  • M E Dahmus
  • O Bensaude
چکیده

Reversible phosphorylation of the C-terminal domain (CTD) of the largest RNA polymerase II (RNAP II) subunit plays a key role in gene expression. Stresses such as heat shock result in marked changes in CTD phosphorylation as well as in major alterations in gene expression. CTD kinases and CTD phosphatase(s) contribute in mediating differential CTD phosphory-lation. We now report that heat shock of HeLa cells at temperatures as mild as 41 degreesC results in a decrease in CTD phosphatase activity in cell extracts. The obser-vation that this CTD phosphatase interacts with the RAP74 subunit of the general transcription factor TFIIF suggests that it corresponds to the previously charac-terized major CTD phosphatase. This conclusion is also supported by the finding that the distribution of the 150 kDa subunit of CTD phosphatase in cells is altered by heat shock. Although CTD phosphatase is found predominantly in low salt extracts in unstressed cells, immunofluorescence microscopy indicates that its intracellular localization is nuclear. The decrease in CTD phosphatase activity correlates with a decrease in amount of 150 kDa phosphatase subunit in the extracts. During heat shock, CTD phosphatase switches to an insoluble form which remains aggregated to the nuclear matrix fraction. In contrast, heat shock did not result in a redistribution of RAP74, indicating that not all nuclear proteins aggregate under these conditions. Accordingly, the heat-inactivation of both the CTD phosphatase and the TFIIH-associated CTD kinase might contribute to the selective synthesis of heat-shock mRNAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prokaryotic Expression of Influenza A virus Nucleoprotein Fused to Mycobacterial Heat Shock Protein70

Background and Aims: The novel approaches in influenza vaccination have targeted more conserved viral proteins such as nucleoprotein (NP) to provide cross protection against all serotypes of influenza A viruses. Influenza specific cytotoxic T lymphocytes (CTL) are able to lyse influenza-infected cells by recognition of NP, the major target molecule in virus for CTL responses. On the other hand,...

متن کامل

Transcription-independent RNA polymerase II dephosphorylation by the FCP1 carboxy-terminal domain phosphatase in Xenopus laevis early embryos.

The phosphorylation of the RNA polymerase II (RNAP II) carboxy-terminal domain (CTD) plays a key role in mRNA metabolism. The relative ratio of hyperphosphorylated RNAP II to hypophosphorylated RNAP II is determined by a dynamic equilibrium between CTD kinases and CTD phosphatase(s). The CTD is heavily phosphorylated in meiotic Xenopus laevis oocytes. In this report we show that the CTD undergo...

متن کامل

Correction: PP2A/B55 and Fcp1 Regulate Greatwall and Ensa Dephosphorylation during Mitotic Exit

Entry into mitosis is triggered by activation of Cdk1 and inactivation of its counteracting phosphatase PP2A/B55. Greatwall kinase inactivates PP2A/B55 via its substrates Ensa and ARPP19. Both Greatwall and Ensa/ARPP19 are regulated by phosphorylation, but the dynamic regulation of Greatwall activity and the phosphatases that control Greatwall kinase and its substrates are poorly understood. To...

متن کامل

Heat-shock inactivation of the TFIIH-associated kinase and change in the phosphorylation sites on the C-terminal domain of RNA polymerase II.

The C-terminal domain (CTD) of the RNA polymerase II largest subunit (RPB1) plays a central role in transcription. The CTD is unphosphorylated when the polymerase assembles into a preinitiation complex of transcription and becomes heavily phosphorylated during promoter clearance and entry into elongation of transcription. A kinase associated to the general transcription factor TFIIH, in the pre...

متن کامل

A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5.

The transcription and processing of pre-mRNA in eukaryotic cells are regulated in part by reversible phosphorylation of the C-terminal domain of the largest RNA polymerase (RNAP) II subunit. The CTD phosphatase, FCP1, catalyzes the dephosphorylation of RNAP II and is thought to play a major role in polymerase recycling. This study describes a family of small CTD phosphatases (SCPs) that prefere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 27 5  شماره 

صفحات  -

تاریخ انتشار 1999